THE TOXIC EXTRACTIVES FROM WEDELIA ASPERRIMA, III.¹ STRUCTURES OF TWO NATURALLY OCCURRING RHAMNOSYL ANALOGUES OF WEDELOSIDE

JOHN K. MACLEOD,* IVOR A.S. LEWIS,² PETER D.R. MOELLER,

Research School of Chemistry, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia

and PETER B. OELRICHS

Department of Primary Industries, Animal Research Institute, Yeerongpilly, Queensland 4105, Australia

ABSTRACT.—The structures of two new toxic 4'-O-rhamnosyl analogues of wedeloside [1], from *Wedelia asperrima*, have been determined by a combination of chemical, nmr, and mass spectrometric analysis.

In previous papers, we described the structural elucidation of the diterpene aminoglycoside wedeloside [1], the major toxic constituent of *Wedelia asperrima* Benth. (Compositae) (1,2). Subsequent biochemical studies (3) have shown wedeloside to be a powerful inhibitor of ADP/ATP transport across the mitochondrial membrane, with a binding affinity to the carrier protein comparable to that of the related diterpene glycoside, carboxyatractyloside [4] (4). We now report the structures of two additional toxic components 2 and 3 from *W. asperrima*.

RESULTS AND DISCUSSION

For the structure of $0-\alpha$ -L-rhamnosyl- $(1'' \rightarrow 4')$ -wedeloside [2], the fab mass spectrum of 2 showed an [MH]⁺ ion at m/z 904 and an [MNa]⁺ ion at m/z 926, which mass-

¹For Part II, see Lewis et al. (2).

²Present address: Chemistry Department, King's College, London, UK.

measured for $C_{46}H_{66}NO_{17}$ and $C_{46}H_{65}NO_{17}Na$, respectively, corresponding to wedeloside [1] plus an additional $C_6H_{10}O_4$ unit. After permethylation of 2, the eims of the product 5 showed an [M]⁺ at m/z 911 ($C_{47}H_{77}NO_{16}$) with prominent ions at m/z476 ($C_{23}H_{42}NO_9$), 419 ($C_{24}H_{35}O_6$), and 189 ($C_9H_{17}O_4$) corresponding to the glycoside ([G]⁺), aglycone ([A]⁺), and terminal sugar ([S]⁺) fragments (Table 1). As was the case with wedeloside 1, the 3-phenylpropanoyl group was lost from 2 during the permethylation procedure. On pertrideuteromethylation, the [M]⁺, [G]⁺, [A]⁺, and [S]⁺ ions shifted to m/z 941 (10 × Me), 494 (6 × Me), 431 (4 × Me), and 198 (3 × Me), respectively, in accordance with the expected number of active hydrogens (OH, NH) in the different portions of the molecule.

_	Compound	Derivative	{M} ⁺	[A] ⁺	{G} ⁺	[S] ⁺
5	· · · · · · · · · · · ·	per Me 2	911	419	476	189
6		per TMSi 3	1567	651	900	363
7		per TMSi 1 ^a	1189	651	522	—

TABLE 1. Structurally Significant Ions (m/z) in the Mass Spectra of Derivatized Toxins 1-3.

^aData are from Lewis et al. (2).

Acid hydrolysis of 2 in aqueous MeOH followed by trimethylsilylation and subsequent gc-ms of the product mixture showed the presence of TMSi-3-phenylpropanoate [9] (1), the tri-TMSi derivative 11 of methyl 2-deoxy-2-(3-methyl-1oxobutyl)amino- α -D-glucopyranoside (1), and a 6-deoxyhexose derivative. The latter was compared with standard TMSi-6-deoxyhexoses and showed an identical mass spectrum and gc retention time to those of tetra-TMSi-L-rhamnopyranoside [13].

Methanolysis of 5, the permethyl derivative of 2, gave three major products. One was a compound with $[M]^+$ at m/z 436 and diagnostic fragment ions at m/z 128, 145, and 165, confirming its structural identity with 13,15,18,19-tetra-0-methyl-wedeligenin [16] (2). The second was a compound with $[M]^+$ at m/z 319 corresponding to a tetramethyl derivative of the de-esterified 2-deoxy-2-acylaminoglucoside unit in 2 (i.e., structure 12). The location of the free hydroxy substituent at C-4 in this compound (corresponding to the position of attachment of the rhamnosyl moiety in 2)

- 6 $R^1 = R^5 = TMSi$, $R^2 = H$, $R^3 = TOPP$, $R^4 = Rha(TMSi)_3$
- 7 $R^1 = R^4 = R^5 = TMSi, R^2 = H, R^3 = PP$
- 8 $R^1 = R^2 = R^3 = H, R^4 = Rha, R^5 = Me$

could be deduced from the presence of well documented cleavage ions at m/z 87, 170, and 171 in its mass spectrum (5). The third was a compound corresponding to a tetra-0-methyl-6-deoxyhexose, with structure **14**.

The basic skeletal structure of 2 was initially deduced by comparison of its ¹³C-nmr spectrum with that of wedeloside [1] (6) (Table 2). With the exception of C-4', the position of attachment of the rhamnosyl moiety, which showed the expected downfield shift of ca. 7 ppm, and the 3'- and 5'-carbons which exhibited small (2-3 ppm) upfield shifts, the chemical shift values for the carbon atoms of the aglycone (C-1 to C-20) and acylaminoglucoside (C-1' to C-20') moieties were directly comparable. The remaining six carbon resonances C-1" to C-6" corresponded to the values reported for a 1- α -linked L-rhamnopyranosyl residue (7). Verification of the structure of 2 was obtained using various 2D nmr experiments (COSY, long-range COSY, HETCOR, long-range HET-COR, and phase-sensitive double-quantum-filtered COSY). These experiments allowed direct correlations between geminally and vicinally coupled and long-range coupled protons as well as analogous proton-to-carbon correlations yielding complete and unambiguous chemical shift assignments. Most notable were the ¹³C chemical shift assignments of the glycosidic carbons and C-2. Severe overlap in the ¹H-nmr spectrum of the protons associated with these carbons and the proximity of their ¹³C chemical shifts necessitated the use of these nmr spectral techniques. The quaternary carbons, as well as the C-5 and C-9 methines, were distinguished via their long-range ${}^{1}H^{-13}C$ couplings to their neighboring methylenes.

In the ¹H-nmr spectrum of **5**, the two C-17 olefinic methylene protons were present at δ 5.13 and 5.24, while the anomeric protons on C-1' and C-1" appeared at δ 4.6 (J = 8 Hz) and δ 4.99 (J = 1 Hz), respectively, the former supporting the assignment of a 1- β -linkage for the 2-deoxy-2-acylaminoglucosyl group (1).

The fab spectrum of **3** showed a weak $[MH]^+$ ion at m/z 920 together with a stronger $[MNa]^+$ ion at m/z 942 ($C_{46}H_{65}NO_{19}Na$) and ions for CO_2 loss at m/z 876 and 898, respectively. The per-TMSi derivative of **3** exhibited, in its eims, an $[M]^+$ at m/z 1567 and an $[A]^+$ ion at m/z 651, indicating the presence of the same aglycone moiety as in 7, the per-TMSi derivative of wedeloside [1] (Table 1). Further, the [S]⁺ ion at m/z 363 suggested that compound **3** also possessed a rhamnose sugar but differed from

Carbon	1 ^b	2	3
C-1	48.1	47.2	46.4
C-2	73.5	75.3	73.3
C-3	41.0	42.9	41.2
C-4	59.0	61.0	59.1
C-5	49.8	52.2	51.7
C-6	24.0	23.4	24.0
C-7	35.8	35.1	35.9
C-8	46.7	47.2	46.9
C-9	53.5	51.9	53.8
C-10	40.0	40.4	41.2
C-11	20.9	20.2	21.0
C-12	41.0	40.5	40.2
C-13	79.5	79.8	79.7
C-14	43.9	45.8	45.4
C-15	82.2	81.5	82.4
C-16	160.4	159.0	160.9
C-17	108.9	109.3	108.8
C-18	175.5	179.0	175.8
C-19	175.5	179.4	175.3
C-20	17.6	17.6	17.7
C-1'	101.2	99.7	101.0
C-2'	55.2	54.7	55.7
C-3'	77.0	75.4	76.7
C-4'	69.6	76.5	76.3
C-5′	77.4	74.7	75.9
C-6'	62.2	61.0	62.0
C-7'	175.5	177.3	175.3
C-8′	46.7	46.2	46.7
C-9'	27.2	26.7	27.2
C-10'	22.9	22.3	23.0
C-11'	22.9	22.4	23.0
C-12'	174.2	175.4	172.1
C-13'	31.5	35.8	48.2
C-14'	36.6	38.9	71.2
C-15'	141.7	141.3	145.2
C-16', -20'	129.2	129.1	127.1
C-17', -19'	129.2	129.7	129.4
C-18'	127.1	124.1	128.6
C-1"		102.0	102.8
C-2"	_	70.7	72.0
C-3″	—	71.2	72.4
C-4"	—	72.7	73.9
C-5″	—	70.3	70.8
C-6″		17.6	18.1

TABLE 2. ¹³C Chemical Shift Assignments^a for Compounds 1, 2, and 3.

^a δ , ppm from TMS, in CD₃OD (1 and 3) and D₂O (2). ^bData are from Lewis and MacLeod (6).

2 in having an extra hydroxy substituent located on the aminoglucoside moiety. The presence in the spectrum of an ion at m/z 179 (C₇H₆OTMSi) placed the hydroxy group on either the phenyl ring or C-3 of the phenylpropanoate group. Treatment of **3** with CH₂N₂ followed by NaOMe/MeOH yielded, after hplc purification, methyl 3-hydroxy-3-phenylpropanoate [**10**], identical by ms and ¹H nmr to an authentic racemic sample, while its [α]D value established the absolute stereochemistry of the chiral center as S (8). The residual compound **8** on methanolysis gave 1-0-methyl α -L-rhamnopy-

ranoside [15], which had a ¹³C-nmr spectrum and optical rotation identical to authentic 1-0-methyl α -L-rhamnopyranoside (7,9).

The ¹³C-nmr spectrum of **3** (Table 2) provided confirmation of its assigned structure. Apart from the carbon atoms at the 13', 14', and 15' positions, which showed the expected downfield shifts compared to those of **2** due to the additional hydroxy substituent on C-14', the spectra of **2** and **3** were comparable, any slight differences being attributable to solvent effects (MeOH vs. H₂O).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Partial details of these have been reported previously (1). Additionally, some gc-ms were recorded on a VG7070F mass spectrometer equipped with a Varian 1400 gc using a 2 m \times 2 mm glass column packed with 2% OV-17; some ¹H- and ¹³C-nmr spectra were run on either a JEOL FX-200 or a Bruker HFX270 spectrometer. The COSY, long range COSY, HET-COR and long-range HETCOR experiments were carried out on a Varian VXR-300S spectrometer, while the phase sensitive double-quantum-filtered COSY and the long range version of the same experiment were performed on a Varian VXR-500 nmr spectrometer. Optical rotations were measured using a Perkin-Elmer 241 spectropolarimeter. Fabms accurate mass measurements were obtained on a VG ZAB-SEQ mass spectrometer using glycerol as matrix and polyethylene glycol as internal reference.

ISOLATION OF 2 AND 3.—The extraction and isolation procedure for 2 and 3 from W. asperrima follows that reported for wedeloside [1] (1) up to the point of elution of the toxic fractions from a column of High Flow Super Cell. The dried fraction containing 2 and 3 was dissolved in MeOH-H₂O-HOAc (40:60:1) saturated with 1,2-dichloroethane and applied to a column of micronized XAD-2 resin (50 g). Elution with the same solvent mixture (500 ml) was followed by stepwise elution with solvent mixtures (100 ml each) containing an increasing proportion of MeOH to H₂O but maintaining the same proportion of HOAc. Fractions from the column were monitored by tlc and after drying provided 2 and 3 as amorphous powders (60 mg and 200 mg, respectively). Compound 2 was further purified by chromatography on a Sephadex LH-20 column (2 m × 1 cm) using MeOH as eluent followed by a second chromatographic step on a Sephadex G-10 column (1 m × 1 cm) again using MeOH as eluent.

Compound 2.— $[\alpha]^{20}D - 34^{\circ}$ (c = 1.5, MeOH); fabms m/z [MH]⁺ 904.4410 (calcd for C₄₆H₆₆NO₁₇, 904.4331), [MNa]⁺ 926.4140 (calcd for C₄₆H₆₅NO₁₇Na, 926.4150); ¹H nmr δ (D₂O, 100 MHz) 1.36 (d, J = 6 Hz, Me), 5.32 and 5.41 (both bs, =CH₂), 7.63 (bs, C₆H₅); ¹³C nmr (D₂O) see Table 2. Compound 3.—Fabms [MNa]⁺ 942.416 (calcd for C₄₆H₆₅NO₁₈Na, 942.410); ¹³C nmr see Table 2.

TOXICITY TESTING.—This was carried out as previously reported (10). Both compounds 2 and 3 were toxic to mice and rats down to the 1 mg/kg level.

PERMETHYLATION AND PERTRIDEUTEROMETHYLATION OF 2.—Compound 2 (9.8 mg) was permethylated according to the procedure described previously for wedeloside (1). The permethylated derivative was purified by preparative tlc on silica [MeCN-C₆H₆, (40:60), R_f 0.39], giving 5 (6 mg). Using the same procedure, but substituting CD₃I, the pertrideuteromethylated derivative of 2 was also prepared.

Compound **5**.—¹H nmr δ (CDCl₃, 100 MHz) 4.60 (d, J = 8 Hz, anomeric H), 4.99 (bs, $J \sim 1$ Hz, anomeric H), 5.13 and 5.24 (both bs, =CH₂); ¹³C nmr (CDCl₃, 15 MHz) 16.7, 17.8, 20.4, 22.9, 25.2, 28.3, 34.8, 36.8, 39.5, 39.9, 42.2, 43.7, 46.5, 47.2, 50.3, 50.7, 51.1, 52.1, 53.0, 57.2, 58.0, 58.9, 59.5, 60.8, 62.8, 68.5, 71.5, 72.2, 77.9, 80.6, 81.1, 82.3, 84.6, 90.4, 98.0, 98.6, 109.3, 151.8, 172.5, 174.4; eims m/z [M]⁺ 911.5242 (calcd for C₄₇H₇₇NO₁₆, 911.5276), 896, 880, 706, 560, 476 (found 476.2850, calcd for C₂₃H₄₂NO₉, 476.2860), 444, 419 (found 419.2433, calcd for C₂₄H₃₅O₆, 419.2434), 387, 224, 189 (found 189.1128, calcd for C₉H₁₇O₄, 189.1127), 171, 165, 128.

Pertrideuteromethylated 2.—Eims m/z [M]⁺ 941, 926, 907, 727, 575, 494, 459, 431, 396, 230, 198, 177, 171, 134.

HYDROLYSIS OF 2.—Compound 2 (1.0 mg) in a mixture of MeOH (1 ml), $H_2O(0.5 ml)$, and 4 M HCl (0.5 ml) was heated in a sealed tube at 90° for 2 h. After evaporation to dryness, the residue was silylated with TRISIL and analyzed by gc-ms (100–250°, Δ 10). Three major hydrolysis products were identified: TMSi-3-phenylpropanoate [9], by comparison of its ms and retention time with the TMSi derivative of an authentic sample (Aldrich); compound 11, by comparison with its published mass spectrum (1); and tetra-TMSi-rhamnose, by comparison of its ms and retention time with the TMSi derivative of an authentic sample (Sigma).

METHANOLYSIS OF 5.—The permethylated derivative 5 (1.0 mg) was dissolved in MeOH (1 ml) and heated at 60° over Dowex 50W resin (H⁺ form) for 2 h. An aliquot, analyzed directly by gc-ms (100–

200°, Δ 10), showed three major peaks: compound **16** ([M]⁺ m/z 436) identified as 13, 15, 18, 19-tetra-0methylwedeligenin [**16**] by comparison with its published mass spectrum (2); compound **12**, eims m/z (rel. int.) [M]⁺ 319 (0.5), 304 (1.5), 288 (1), 287 (2), 274 (4), 272 (4), 244 (10), 224 (20), 171 (21), 170 (27), 141 (30), 140 (79), 117 (100), 87 (>100); and compound **14**, identified by comparison of its ms and retention time with those of authentic tetra-0-methyl rhamnose.

SILVLATION OF 3.—Compound 3 (1.0 mg) was suspended in dry MeCN (10 μ l) and treated with BSTFA-TMCS (9:1) (50 μ l) at 70° for 20 min to give the per-TMSi derivative 6. An aliquot was subjected to direct probe eims. For significant ions, see Table 1. Accurate mass measurement on m/z 179 gave 179.0894, C₁₀H₁₅OSi requires 179.0892.

HYDROLYSIS OF **3**.—Compound **3** (40 mg) in MeOH (2 ml) was first treated with CH₂N₂ in Et₂O, followed by addition of a small amount of sodium to the MeOH solution after removal of the Et₂O. After 18 h at room temperature, the solvent was removed and the residue triturated with CHCl₃. Hplc of the CHCl₃ washings on a Zorbax SIL column (25 cm × 4.6 mm) using CH₂Cl₂-MeCN (9:1) as eluent afforded (S)-methyl 3-hydroxy-3-phenylpropanoate [**10**] (2.6 mg), $[\alpha]^{25}D - 15^{\circ}$ (c = 1.3, EtOH) [lit. (8) (*R*)-form +18.3°]. ¹H-, ¹³C-nmr, and mass spectra were identical to an authentic sample of racemic **10**.

The residue from alkaline hydrolysis was taken up in MeOH (2 ml). Dowex 50W resin (H⁺ form) was added and the mixture was heated at 60° for 2 h. After filtration and removal of solvent, the hydrolysate was chromatographed [plc; EtOAc-MeCN (9:1)] giving (R_f 0.23) 1-0-methyl α -L-rhamnopyranoside [**15**] (5 mg) identical (¹³C nmr, optical rotation) to an authentic sample.

ACKNOWLEDGMENTS

The authors thank Mr. J.V. Eichholzer for technical assistance and VG Analytical, United Kingdom, for measuring the fabms of **2**.

LITERATURE CITED

- 1. J.V. Eichholzer, I.A.S. Lewis, J.K. MacLeod, and P.B. Oelrichs, Tetrabedron, 37, 1881 (1981).
- 2. I.A.S. Lewis, J.K. MacLeod, and P.B. Oelrichs, Tetrahedron, 37, 4305 (1981).
- 3. M. Klingenberg, M. Appel, and P.B. Oelrichs, FEBS Lett., 189, 245 (1985).
- 4. R. Santi and S. Luciani, Eds., "Atractyloside: Chemistry, Biochemistry and Toxicology," Piccin Medical Books, Padua, 1978.
- 5. K. Heyns and D. Müller, Tetrahedron, 21, 3151 (1965).
- 6. I.A.S. Lewis and J.K. MacLeod, Org. Magn. Reson., 18, 138 (1982).
- C. Laffite, A.M. Nguyen Phuoc Du, F. Winternitz, R. Wylde, and F. Pratviel-Sosa, Carbohydr. Res., 67, 105 (1978).
- 8. C. Schöpf and W. Wüst, Ann., 626, 150 (1959).
- 9. W.T. Haskins, R.M. Ham, and C.S. Hudson, J. Am. Chem. Soc., 68, 628 (1946).
- 10. P.B. Oelrichs, P.J. Vallely, J.K. MacLeod, and I.A.S. Lewis, J. Nat. Prod., 43, 414 (1980).

Received 13 February 1990